
Catalyst & Moo
Hopefully Help Tips

Kennedy Clark
Austin.pm - 140722

Agenda
● Catalyst

○ Controllers
○ Models
○ Views
○ Miscellaneous

● Moo (time permitting)

○ What is it
○ Common usage patterns
○ General tips

Kennedy Clark
Vienna, Virginia
kclark@kennedyclark.com

Catalyst

Controllers

Catalyst Controllers
● Quick review - MVC:

○ Controllers receive requests
○ Gets data from your Model
○ Lets a View render it to send back to the browser

● Example Controller Action:
package MyApp::Controller::Users; # Some Controller class

sub view :Path('/users/view') { # Config dispatch logic

 my ($self, $c) = @_; # Get $self & cat context

 $c->stash(# Stash is per-request

 users => [$c->model('DB::User')->all], # Get data from Model

 template => 'users/view.tt', # Specify View template

);

}

Controllers - Use Chaining:
package MyApp::Controller::Users;

sub base :Chained('/') :PathPart('users') :CaptureArgs(0) {

Check auth here

}

sub viewall :Chained('base') :PathPart('view') :Args(0) {

Show list of all users

}

sub get_user :Chained('base') :PathPart('') :CaptureArgs(1) {

my ($self, $c, $user_id) = @_;

$c->stash(user_obj => $c->model('DB::User')->find($user_id));

}

sub view_user :Chained('get_user') :PathPart('view') :Args(0) {

Display details on the single user here using user_obj already in stash

}

sub edit_user :Chained('get_user') :PathPart('edit') :Args(0) {

Edit details on the single user here using user_obj already in stash

}

Not an endpoint

An endpoint

Controllers - Use Chaining:
● View from dev server debug output:

$ perl script/myapp_server -rd

...

[debug] Loaded Chained actions:

.-------------------------------------+--------------------------------------.

| Path Spec | Private |

+-------------------------------------+--------------------------------------+

| /users/view | /users/base (0) |

| | => /users/viewall |

| /users/*/view | /users/base (0) |

| | -> /users/get_user (1) |

| | => /users/view_user |

| /users/*/edit | /users/base (0) |

| | -> /users/get_user (1) |

| | => /users/edit_user |

'-------------------------------------+--------------------------------------'

Controllers - Configuration:
● myapp.yml:

$ cat myapp.yml

name: MyApp

Controller::Users:

 corp_hr_api_uri: 'https://somewhere.com/employees'

 corp_hr_api_token: 'Rj#sj4s#fLelrig3jl9'

● Note: Can access like this, but don't:
$c->config->{Controller::Users}->{corp_hr_api_url}

$c->config->{Controller::Users}->{corp_hr_api_token}

MyApp->config->{Controller::Users}->{corp_hr_api_url}

MyApp->config->{Controller::Users}->{corp_hr_api_token}

Controllers - Configuration:
● MyApp::Controller::Users

package MyApp::Controller::Users;

use Moose;

use namespace::autoclean;

BEGIN {extends 'Catalyst::Controller'; } # Boilerplate down to here

has corp_hr_api_url => (# Add attributes via normal Moose

is => 'ro',

required => 1,

isa => 'Str',

);

has corp_hr_api_token => (

is => 'ro',

required => 1,

isa => 'Str',

);

Controllers - Configuration:
● To use a variable in controller action

$c->log->debug("Using HR API URL: " . $self->corp_hr_api_url);

● If you forget to define a variable:
$ perl script/myapp_server.pl -r

Couldn't instantiate component "MyApp::Controller::Users", "Attribute
(corp_hr_api_token) is required at (eval 1095)[(eval 1094)
[/home/kclark/perl5/lib/perl5/Eval/Closure.pm:123]:3] line 39.

MyApp::Controller::Users::new('MyApp::Controller::Users', 'MyApp', 'HASH
(0xa8c6a78)') called at /home/kclark/perl5/lib/perl5/Catalyst/Component.pm line
110

...

Models

Catalyst Models
● Represent "data" and business logic for your

application
○ Many types:

■ Database
■ Files
■ Web Service (e.g., RESTful API client)

● Goal:
○ "Thin" controllers
○ "Fat" (or at least "Smart") models

Use Catalyst::Model::Adaptor
● Build your model to function *outside* Catalyst

○ Including tests!
○ Just a set of classes
○ Consider Moo (stay tuned)

● Then use Catalyst::Model::Adaptor to create a
single "glue class" in MyApp::Model

Catalyst::Model::Adaptor Example
The external model class (or classes):

package OutsideMyApp::SomeClass;

use Moo; # Or any other means of creating a class

sub do_something {

 my ($self) = @_;

 return "test message";

}

1;

The adaptor class:
package MyApp::Model::SomeClass;

use base 'Catalyst::Model::Adaptor';

__PACKAGE__->config(class => 'OutsideMyApp::SomeClass');

Catalyst::Model::Adaptor Example
Using model from Catalyst:

package MyApp::Controller::Root;

...

sub test_page :Path('/test_msg') {

 my ($self, $c) = @_;

 ...

 # Use $c->model to access your model

 $c->response->body($c->model('SomeClass')->do_something);

}

...

Catalyst::Model::Adaptor:
● Default = instantiate at webapp startup

○ What you want most of the time
● Options for:

○ Per Request ("Factory::PerRequest")
○ Per call to $c->model ("Factory")

Models - Use DBIx::Class
● Aka "DBIC"
● Extremely powerful ORM
● E.g. - Chaining for queries - very expressive:

 my @active_users

 = $c->model('DB::Company')

 ->find($company_id) # Get the company

 ->users # Follow relationship to users

 ->active # But only active users

 ->created_in_last_days(30) # That have been created in last 30 days

 ->with_role('admin'); # That are administrators

Models - DBIx::Class - Key Classes:
1. Schema Class

○ Represents the whole database
○ MyApp::Schema.pm

■ From Catalyst: $c->model('DB');
2. Result Classes

○ One per Table (or View)
○ Represents a row of results from a query
○ Add per-row methods/logic here
○ E.g.: MyApp::Schema::Result::*

Models - DBIx::Class - Key Classes:
3. ResultSet Classes

○ A set of rows (possibly an entire table) from a query
○ Equates to conditions and joins needed in SQL
○ Add "canned queries" here
○ Eg: MyApp::Schema::ResultSet::*
○ From Catalyst: $c->model("DB::$table_name");

● Be sure to use all 3 to customize your model

Models - DBIx::Class
● 2 options Result Classes ⇔ SQL Schema:

CREATE TABLE user (
 id SERIAL PRIMARY KEY,
 username VARCHAR(100),
 password VARCHAR(100),
 email_address VARCHAR(
 first_name VARCHAR(100),
 last_name VARCHAR(100),

);

CREATE TABLE user (
 id SERIAL PRIMARY KEY,
 username VARCHAR(100),
 password VARCHAR(100),
 email_address VARCHAR(
 first_name VARCHAR(100),
 last_name VARCHAR(100),

);

CREATE TABLE user (
 id SERIAL PRIMARY KEY,
 username VARCHAR(100),
 password VARCHAR(100),
 email_address VARCHAR(
 first_name VARCHAR(100),
 last_name VARCHAR(100),

);

use uft8;
package MyApp::Schema::R

use strict;
use warnings;
use base ‘DBIx::Class::Core’

__PACKAGE__->add_colum
 “id”, {
 data_type => “inte
 is_auto_inrement => 1,
 is_nullable => 0,

DBIx::Class::Schema::Loader::make_schema_at()

DBIx::Class::Schema::deploy()

SQL DDL Perl Code

Models and Catalyst Context ($c)
● Avoid using the $c in your Models

○ Binds your models to Catalyst - harder to reuse
● But if you do need it:

sub ACCEPT_CONTEXT { # Catalyst calls this, not you

 my ($self, $c, @args) = @_;

 # Do something with $c

}

● Probably want one instance per request, e.g.:
○ Catalyst::Model::Factory::PerRequest
○ Catalyst::Component::InstancePerContext

Views

Catalyst Views
● Normally Template Toolkit

○ Very powerful, easy to use, lots of features, etc.
○ But many other options if you prefer

● Can have multiple views in one app:
○ MyApp::View::TT (default site)
○ MyApp::View::TTNewLook (beta test new layout)
○ MyApp::View::Mobile (lightweight version)

Views - Template Toolkit & DBIC
● In most cases, it’s all the same
● But one thing to watch out for:

○ As a part of DBIx::Class being "smart", it returns:
■ Scalar Context: A ResultSet
■ List Context: The list of objects from the ResultSet

○ TT calls methods in list context
[% users.purchases.count %]

○ If you need a ResultSet, use the _rs variant
[% users.purchases_rs.count %]

[% users.search_rs(...).count %] (but avoid search() in Views,
use a ResultSet method for a “canned search” instead)

Miscellaneous

Misc:
● Use local::lib

○ Using system Perl isn't worth the trouble
○ Can just tar up your development libs and copy to

production to have exactly the same versions

● Use Log::Contextual
○ Docs aren't great, but the functionality is
○ Esp. useful in model classes (where you don't have

$c->log)

Misc - Debugging
● Normal debugger

○ Set a breakpoint:
sub view :Path('view') {

 my ($self, $c) = @_;

$DB::single=1;

 $c->stash(users => [$c->model('DB::User')->all]);

}

○ Run development server under debugger:
■ perl -d script/myapp_server
■ Note: Do NOT use with -r

Misc - Debugging
● Dumping data to log:

sub view :Path('view') {

 my ($self, $c) = @_;

 my @users = $c->model('DB::User')->all;

 $c->stash(users => \@users);

Temporarily add logging

use Data::Dumper::Concise;

$Data::Dumper::Maxdepth = 3;# DBIC objects are BIG so limit depth

$c->log->debug('Users: ' . Dumper(@users));

}

● DBIx::Class:
○ DBIC_TRACE=1 perl script/myapp_server -r

Misc
● High Availability FastCGI Setup:

○ E.g.: nginix:
■ Create a "upstream fastcgi_pool"
■ Then run two copies of FastCGI inside the pool

● Each can have as many -n processes as you want
● Can restart each and it’s normally “hitless”

○ At least for small patches or just a restart

Moo

Moo - What is it?
● "Lightweight Moose"

○ Moose is great, but startup is slow
● Moo:

○ Fast startup
○ Pure Perl
○ All you need for almost all situations:

■ POD says Moo "provides almost -- but not quite -- two
thirds of Moose"

■ But it's 95%+ of what you need on a daily basis in my
experience

Use Moo
● Catalyst is fairly tightly bound to full Moose
● But nothing says you can't go with a more

lightweight option for you model classes
○ You are building them outside Catalyst, right?

● Using Moo, your tests for these external classes
will be MUCH faster

Moo - Compatibility
● Moo has many Moose compatibility features
● And TIMTOWTDI definitely applies
● But Moo is fairly opinionated

○ You probably want to embrace a certain style of
Moo/Moose syntax and features
■ For Example:

● Uses MooseX::AttributeShortcuts syntax
● Types are coderefs vs. strings (or blessed constraint)
● Can use MooX::late for "plain old Moose" syntax

■ Automatically enabled FATAL warnings

Moo - Common Patterns
package MyClass;

use Moo;

use warnings NONFATAL => 'uninitialized'; # Prevent death on undef

use Types::Standard qw[Str InstanceOf]; # See POD for other types available

use URI;

has scheme => (# Example of attribute required by constructor

 is => 'ro',

 isa => Str, # Note coderef from Types::Standard, not string

 required => 1,

);

has uri => (# Example of attrib you build at runtime

 is => 'lazy', # "lazy => 1" like Moose on separate line OK too

 isa => InstanceOf['URI'], # Must be an Object of type URI

 builder => sub { # Anon sub to construct attrib value

 URI->new(shift->scheme . '://perl.com'); # Die here if invalid value

 },

);

1

2

Most often,
you just need
one of these 2

options

Moo or Moose - General Tips
● Use lazy

○ Required when accessing other attributes
○ But can give performance boost in other cases

● Use Roles
○ As an alternative to traditional OO inheritance

● Use method modifiers:
○ before, after, around

● Use ‘handles’ for delegation

Thank you

